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Estimates of 

We consider percolation on the sites of a graph ~, e.g., a regular d-dimensional 
lattice. All sites of ~ are occupied (vacant) with probability p (respectively, 
q = 1 - p), independently of each other. W denotes the cluster of occupied sites 
containing a fixed site (which will usually be taken to be the origin) and # W 
the cardinality of W. The percolation probability 0 is the probability that 
:g: W =  ~ ,  i.e., O(p) = Pp(# W= oo). Some critical values ofp, pH andpT, are 
defined, respectively, as the smallest value of p for which O(p)> 0, and for 
which the expectation of # W is infinite. Formally, PH = inf{p : O(p) > 0) and 
pr=inf (p:  Ep{#W} = ~ ) .  We show for fairly general graphs ~ that if 
P < PT, then Pp ( #  W ~ n} decreases exponentially in n. For the special cases 

= ~o = the simple quadratic lattice and ~ = ~1 = the graph which corresponds 
to bond-percolation on Z 2, we obtain upper and lower bounds for O(p) of the 
form C[p -pI4[ ~, and bounds for Ep(~: W} of the form C[p -pH] -~. We also 
investigate smoothness properties of A(p)= Ep(number of clusters per site) 
= Ep {(:#: W)-1; # W/> 1}. This function was introduced by Sykes and Essam, 
who assumed that A(. ) has exactly one singularity, namely, at p = p~q. For the 
graphs ~o and ~l (i.e., site or bond percolation on g 2) we show that A(p) is 
analytic at p #: PH and has two continuous derivatives at p = PH- The emphasis 
is on rigorous proofs. 

KEY WORDS: Percolation theory; cluster size distribution; exponential 
decay; power laws; number of clusters per site; critical probability; analy- 
ticity and smoothness properties. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF R E S U L T S  

C o n s i d e r  a p e r i o d i c  g r a p h  ~ in  W.  By  th i s  we  m e a n  t h a t  t h e  v e r t i c e s  a n d  

edges  of  ~ a re  e m b e d d e d  in  R a a n d  t h a t  t h e r e  exis t  d l i n e a r l y  i n d e p e n d e n t  

v e c t o r s  U1 . . . .  , Ua ~ ~ s u c h  t h a t  t he  se t  of  ve r t i c e s  a n d  e d g e s  of  ~ is 
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invariant under translation by any of the U~. Two vertices v l and v 2 of 
will be called adjacent or neighbors of each other if there is an edge of 
between v I and v 2. A path is a sequence v o . . . . .  v n of vertices for which 
vi+ 1 is adjacent to v i for 0 < i < n - 1. Unless stated otherwise a path is 
assumed to be self-avoiding, i.e., to have v i ~ vj for i ~ j .  A set of vertices is 
connected if for every pair of vertices vl,  v 2 in the set there is a path which 
starts with v I and ends with v 2. Throughout we only consider periodic ~ with 
the following properties: 

There exists a z < m such that each vertex is an 
end point of at most z edges (1.1) 

Each compact  set of Nd contains at most finitely 
many  vertices of ~ (1.2) 

and 
is connected (1.3) 

In site percolation all vertices (or sites) of ~ are chosen, independently 
of each other, to be occupied or vacant. Except in Section 2 we only 
consider the case where all vertices have the same probability, p, of being 
occupied. The corresponding probability measure is denoted by Pc' and Ep 
denotes expectation with respect to Pp. A convenient way of describing the 
configuration of occupied sites is by means of the random variables 

= [ + 1 if v is occupied X(v)  
l - 1 if v is vacant 

Each configuration can now be specified by specifying all X(v), i.e., by 
specifying a point of a = I - I ~ . ~ { - 1 ,  + 1). Pp can then be identified with 
the product measure on ~2 with each marginal distribution given by 
Pp{X(v) = + 1) = p ,  Pp{X(v) = - 1} = 1 - p .  The best-known example is 
site percolation on the square lattice. In this case the sites of ~ are the 
points of Z 2 =  {(il, i2):il , i  2 integral) and two points (i l, i2) and (J l , j2)  of 
~2 have an edge between them if and only if 

I i, - J , [  + 1i2-j2[ = 1 (1.4) 

We shall denote this graph by ~0. 
Another common variant of percolation deals with bond percolation. 

In this model, the edges (or bonds) of ~ are chosen independently to be 
open or blocked. It  is well known r that bond percolation can be viewed 
as a special case of site percolation, by going over to a so-called covering 
lattice. Each edge of ~ is viewed as a vertex of the covering lattice ~, and 
two vertices of ~ are adjacent if their corresponding edges in ~ have a 
vertex in common. An open (blocked) edge of ~ corresponds to an 
occupied (vacant) vertex of ~. Because of the greater generality of the site 
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problem we shall phrase everything in this paper in terms of site percolation 
(even though this does make the formulation less conceptual for some 
examples). The classical example of bond percolation on the square lattice 
(7/2 ) is by the above translation scheme equivalent to the site problem on 
the following graph ~1: the vertices of ~1 are the points of 7/2 and the points 
(il,i2) and (Jl,J2) are adjacent on ~l when (1.4) holds or when 

[il - J l [  = [i2 - j2 [  = 1, together with i I + i 2 odd or 
i I - i 2 even (1.5) 

~l is obtained from ~o by adding as edges the diagonals in alternating 
squares. Bond percolation on the square lattice will be referred to here 
simply as percolation on ~l. 

A set of vertices will be called occupied when all vertices in the set are 
occupied. An occupied cluster is a maximal connected occupied set of 
vertices. W v will denote the occupied cluster containing v; W~ = 0 if v is 
vacant. # W~ denotes the cardinality of W v. W will be the occupied cluster 
of some singled out vertex w 0. Usually we take w 0 to be the origin. In many 
examples all vertices of ~ play the same role so that it makes no difference 
how we choose w 0. In any case, it is known (31 [compare also (2.42) and 
(2.43) below] that the critical probabilities which we define now are 
independent of the choice of w o. The percolation probability is 

O(p) = Pp { #  W =  oc} (1.6) 

The critical probability of most interest is 

PH = in f (p  : O(p) > 0} (1.7) 

In addition one also uses 

P r  = i n f { p :  Ep{#  W} = m} (1.8) 

and a further critical probability Ps, defined in terms of "sponge crossing 
probabilities. ''(4'5) To define these, take U 1 . . . .  , U d as the basis for Nd so 
that each vertex v of ~ can be written uniquely as 

d 

v = • ?ti(v)U~ (1.9) 
i ~ l  

The "sponge" T0(n; i) is the parallelepiped 

T0(n; i) = {v a vertex of ~ : 0 < hj(v) ~< 3n, j  4= i, and 0 < hi(v ) < n} 

(1.10) 

We call a path 2 Vo, Vl . . . . .  vr an i-crossing of To(n; i) if each vs is occupied, 

2 Note  tha t  the ini t ial  po in t  v 0 and  the end poin t  v r may  be outs ide  T0(n; i). 
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0 <  s <  r, a n d f o r 0 < s < r  

v, ~ To(n; i) as well as Xi(Vo) -<< 0 < Xi(s) < n < Xi(Vr) (1.1 1) 

The crossing probabili ty of To(n; i) is now 

To(n; i) = To(n; i, p)  = Pe (3 / - c ross ing  of To(n; i)) (1.12) 

The critical probabili ty Ps is defined by 3 

p s = i n f { p : l i m s u p  max ' ro (n ; i ,p )>O } (1.13) 
n-e,~ l<i~d " 

We need two more lattice constants:  

p ,=  # { v ~ g  : 0 < X i ( v ) <  1,1 < i <  d}  (1.14) 

and A is an integer such that 

]X,(v') - Xi(v")l < A for all pairs of adjacent  

vertices v', v" ~ and 1 < i ~< d (1.15) 

It is clear that  A can be taken finite by virtue of the periodicity of ~ and 
/~ < oe [see (1.2)1. 

For  instance if ~ = ~ 0  we can take U 1 = ( 1 , 0 ) ,  U 2 = ( 0 , 1 ) ,  i.e., the 
usual coordinate  vectors. With  this choice Xi(x) is simply the ith (Cartesian) 
coordinate of x , /z  = 1 and A = 1. % is now the probabil i ty of crossing an 
n • 3n rectangle in the short direction, and Ps is the smallest value of p for 
which this % does not  tend to zero. 

The following corollary is a special case of Theorem 1, and is valid for 
any periodic graph 9. 

Set 

Corollary 1 

Pr =Ps  < PH (1.16) 

= x ( d )  = d - ' ( 2 e 7 d )  -'3~ (1.17) 

Then  for p > Ps and N ) A we must  have 

max % ( m ;  i, p)  > x (1.18) 
l<i<d 

Moreover,  if (1.18) fails for some N >/A and some p (in particular for 
P < Ps = Pr),  then there exist constants 0 < C i = Ci(p, 9) < m such that 

Pp ( # W >~ n} < C,e - c~ ,  n >~ O (1.19) 

3 It is important to note that the present definition of Ps differs from those used in Refs. 4-6, 
since those references consider the crossing probabilities of squares rather than rectangles. 
Only for graphs with sufficient symmetry properties can we prove that the two definitions 
lead to the same value of Ps- This is for instance true when ~ = G o or ~ = g l. 
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Theorem 1 itself is more general in that it allows different vertices to 
have different probabilities of being occupied. 

We note that (1.19) shows that for/) < PT not only is the first moment 
of # W finite, but all moments of # W are finite for such p. At.pT we have 
the following general result: 

Corol lary 2 

EpT ( # W } = oe (1.20) 

(See Theorem 3 for further information for the special graphs ~0 and 

There is good reason to believe that PT = Ps = PH in general, but so far 
this has only been proved for bond and site percolation on Z 2 (i.e., ~ = ~0 
or ~1)(7,8) and for bond percolation on the triangular and hexagonal 
lattice. (9) p r = p H  has also been proved by Griffeath, (I~ Section 10, for 
oriented site percolation on the first quadrant of Z 2. All but the last case are 
examples of graphs in •2 which have a matching lattice in the sense of 
Sykes and Essam. (I~) We shall use ~ * to denote the matching lattice when 
it exists. Sykes and Essam tried to characterize the critical probability as the 
singularitity of the "average number of occupied clusters per site." It was 
shown by Grimmett (~2) and Wierman (~3) that this average number of 
occupied clusters per site can be defined as a thermodynamic limit, and 
that it equals 

-- 1 ~ * E p ( - - - J ~ l  " # W ~ > I )  (1.21) A ( p )  = # ' 

where ~]* runs over those v ~ ~ with 0 < ~(v)  < 1, 1 ~< i < d, and/~ is the 
number of such v [see (1.14)]. Sykes and Essarn proved the remarkable 
result that for any pair of matching graphs ~ and ~* there exists a 
polynomial in p, qb(p), such that 

A(p) -- 2~*(1 - p) = q~(p) (1.22) 

Of course A*(p) is defined by (1.21) but with ~ replaced by ~*; in general, 
if A is a quantity defined for percolation on 9, then A* denotes the same 
quantity for percolation on ~ *. Sykes and Essam conjectured that A(p) has 
only one singularity as a function of p, and that this occurs at p = PH. They 
then used (1.22) and other relations to calculate PH for various lattices. The 
next theorem confirms their conjecture for the examples listed above as 
having PT = PS = PH (excluding the directed percolation example). 

Theorem 2. Let ~ and 9" be a pair of matching (in the sense of (~)) 
periodic graphs in R 2. Then A(p) is an analytic function of p for all p 
outside [Pr, 1 -p~-]. For site or bond percolation on Z 2 (i.e., ~ = ~0 or .Q 1) 
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2x(p) is analytic for p =#PH and twice continuously differentiable for all 
p ~ [0, 11. 

We note that Theorem 2 says nothing about a singularity of 2~(.) at 
p = �89 for ~ = ~1, or at p = p n  in general. At present we do not know 
whether such a singularity exists4; see end of Section 4 for some further 
details. 

In analogy with various other models in statistical mechanics one 
might hope that several functions of p with a singularity at PH behave 
asymptotically as a power of ]p - P H I  as P--->PH from above a n d / o r  below 
(see Refs. 14-17). In Section 4 we obtain estimates for O(p) and Ep { # W} 
in powers of [p- -PHI  for ~ = g0 or ~ = ~l- 

T h e o r e m  3. When ~ = ~0 or ~ = ~1, there exist constants 0 < C i 
< m  a n d 0 < a  s<oe such that 

C3( p -eL,) '~3 <~ O(p) < C4( p --pH) a4, ]7 >ell 

C5(p. - t  7 )-as < gp { #: W} ~ C6(p. - p)-~ p < p .  

and 

cT(p - < { #  w;  # w <  oo} < c8(p 

Moreover, uniformly for 0 < p ~< 1 

Pp{N < ~ W <  o0) <~ C9 N-c~9 

and 

Ep {(z~ m)a9/2; z~: m < oo} ~ Clo 

(1.23) 

(1.24) 

P >PH 
(1.25) 

(1.26) 

(1.27) 

Remarks. (i) Of course PH = �89 in the above theorem when ~ = g l. 
Also, since it is known (1'8'1s) that O(p) = 0 for p ~< PH for g = ~o or ~l, 
(1.27) implies 

Ep {( :~  W )  a9/2} • C10 for p < PH 

Theorem 3 will be proven in Section 3 before Theorem 2, because the proof 
contains some estimates on the distribution of # W which are useful for 
Theorem 2. It  appears that the method of proof will also work for other 
graphs. 

(ii) As we shall see in Section 4 it is easy to see from Theorem 1 that 
A(p) and Ep((#W) m} are analytic in p < P r  for any ~ and any m t> 0. 

4 We had previously claimed that A(.) did not have a fourth derivative at p = �89 when ~ = ~1. 
However, our "proof" of this contained an error. 
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However, we know nothing about analyticity of ZX(p) for p > Pr  except for 
matching pairs of graphs. Similarly we do not know whether O(p) is 
analytic for any p > PH. [It is, of course, analytic for p < PH and not at 
P = PH because O(p) = 0 for p < PH and O(p) > 0 for p > PH'] 

2. THE EXPONENTIAL DECAY OF Pp{# W >- n} 
In this section we consider a slightly more general setup than discussed 

in the introduction. We allow P ( X ( v ) =  1} = P ( v  is occupied} to vary 
with v. However, to preserve the periodicity we insist that 

P{X(v l )  = l} = P { X ( v 2 ) =  1} (2.1) 

whenever v 2 is obtainable from v I by a translation through a multiple of 
any /.7,. Thus (2.1) must hold, whenever 

d 

V2 -- Vl = E ki Ul for s o m e  k i ~ 7/ 
i=1  

Since there are only finitely many vertices of ~ in the compact set 
{ v : 0  < hi(v ) << 1, 1 < i <~ d} P ( X ( v ) =  1} can take only finitely many 
different values. These values will be fixed throughout this section and will 
not be indicated explicitly in the notation. P will denote the corresponding 
probability measure when all X(v) are again independent, and E will 
denote expectation with respect to P. For ~ = ( n l , . . . ,  nd) with each n i a 
positive integer we introduce the parallelepipeds 

T ( ~ ; i ) =  { v ~  : 0 < ) t j ( v ) < 3 n j ,  j v  ai ,andO<)t i (v  )<hi}  (2.2) 

As in (1.11) an /-crossing of T(~;i)  is a path 5 % , . . . , v  r with all v, 
occupied 0 < s < r, and for 0 < s < r v, E T(~;i),  as well as Xi(Vo) << 0 
< hi(v,)< ni < )t~(Vr). The crossing probability for the ith direction of 
T(~; i) is 

~-(n; i) = P {3 an/-crossing of T(~; i)} (2.3) 

We remind the reader that A was defined in (1.15) and W = Wwo for some 
fixed site w o. 

Theorem 1. Let 

~r = x (d)  = d - ' ( 2 e 7  a) -  13~ (2.4) 

If there exists an N = (N I . . . . .  Nd) such that 

N/>~A a n d ~ - ( N ; i ) <  x f o r i =  1 . . . . .  d (2.5) 

5 Aga in  v o and  v r m a y  be outside T(~;  i). 
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then there exist constants 0 < C~, C 2 < oo such that 

P {-~z W >1 t~} < C1 e-c2n, n ) 0 (2.6) 

[see (2.28)-(2.30) for the values of C l, C j .  If P {v is occupied) > for all v 
and 

E { # w } < oo (2.7) 

then 
r(~;i)-->0, 1 ~< i ~< d (2.8) 

as ~--+ oo along the diagonal [i.e., n of the form (n, n . . . . .  n)] and hence 
(2.6) holds. 

Kunz and Souillard (19) already proved (2.6) if P ( X ( v ) =  1} < ( z -  
1) -1 for all v, where z satisfies (1.1). The present proof is a reduction of 
condition (2.6) to the case of small P {X(v) = 1} by a block approach; the 
parallelepiped T(~) and suitable translates of it are viewed as vertices of an 
auxiliary graph s A similar construction of an auxiliary graph also occurs 
in the closely related Lemma 2 of Ref. 8. The remainder of this section is 
devoted to the details of the proof of Theorem 1. The proof is broken up 
into several lemmas. As in Ref. 19 we bring in the number of connected 
sets of a given size and given boundary size and containing w 0. For any set 
G of vertices of ~, # C denotes the cardinality of ~. ~C is the set of vertices 
of ~ \ ~  which are adjacent to some vertex of C, and :~aC its cardinality. 
We set a(O,l) = 81j and for n ~> 1 

a(n, l) = number of connected sets C containing w 0 

with # ~ = n  and # ~ C = l  (2.9) 

L e m m a  1. 

Consequently 

Also 

For a n y 0 <  p <  1, q - l - p ,  

2 a(n, l )p"q '= 1 - O(p) < 1 
n = 0 / > 0  

(2.10) 

(2.11) 

~, a(n , l )  < ( z -  1)2+(z- ' )"(z-  2) -(z-2)" 
l > 0  

< ( z -  1 )2e"(z-  1)" (2.12) 

and for some universal constant c o > 0 ,  and all 0 < p <  1, q = l - p ,  
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0 < x ~ <  %, 

X a(n , l )p~q '<  {(z - 2)n + 2 } e x p ( -  - -  
l wi th I p l -  qn] > xnpq \ 

725 

x p2q3 ") (2.13) 

Proof. (2.10) is well known and immediate from 

Pp ( W = E} = pnq, (2.14) 

for any connected C containing w 0 with -#C = n, # 0 E  = l; the left-hand 
side of (2.10) simply equals Pp( W =  E for some finite E}. (2.11) follows 
from (2.10) by taking p = n / ( n  + l), q = l / (n  + l). Also (2.12) follows 
from (2.10) by taking p = (z - 1) -1, q = (z - 2 ) ( z  - 1) -1 and the observa- 
tion that for any connected 

1 < # 0 C  < ( # E ) ( z  - 2) + 2 (2.15) 

(cf. Ref. 5, pp. 141, 142; (2.15) can easily be proved by induction on ~ ) .  
As a consequence of (2.15) the sums in (2.10) and (2.12) over l can be 
restricted to 1 < l < n ( 2 -  2 ) +  2. Finally, by virtue of (2.15) and (2.11), 
the left-hand side of (2.13) is bounded by 

I p l -  qnl> xnpq n l . 
-n---~l) ~ l  t 

n l (2.16) 

where the maximum in the right-hand side is over all 0 < p < 1 and 
1 < l < ( z - 2 ) n + 2 w i t h ] p l - q n [ > x n p q .  N o w f i x n a n d  1 < l < ( z - 2 )  
n + 2 and consider 

f ( p )  = nlog n n + l + n l o g p  + / l o g - ~  + / l o g q  (2.17) 

One easily sees that f is increasing in p for pl - qn < 0 and decreasing for 
pl - qn > 0. It follows that its maximum over the set {p :[pl - qn[ > xnpq} 
is taken on when p l -  qn = +_ xnpq. One easily sees that when x is small, 
and p l -  qn = +-xnpq, then f ( p ) =  -�89 + O(x)]. (2.13) follows. 

We now assume that N is such that (2.5) holds. We introduce an 
auxiliary graph E and a percolation problem on E. The vertices of E are the 
points of Z a, and two such points/7 = (k I . . . .  , ka) and ] = (ll, �9 � 9  la) are 
connected by an edge of E, or adjacent in E, if [k i - l i [ < 3  for i =  
1 . . . .  , d. The vertices of s are again divided into two classes, white and 
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black, say; the vertex /~ is colored white when at least one of the events 
E(k,  i) = E(k,  i; N) occurs, and black otherwise. Here  

E(/7, i) = there exists an/ -cross ing of T(IV; i) + ~ kj~.  Uj (2.18) 
j = l  

Of course an /-crossing of T(N;i)+XkjNjUj is an occupied  pa th  
v 0 . . . . .  v r with kjNj < Xj(v,) < (kj + 3)Nj for  j v a i and Xi(v0) < k,N i 
< ~s(v,) < (ks + 1)Ni < Xi.(Vr), 0 < S < r. The  event E(/7, i) is simply ob- 
tained by "shifting" E(O,i) by ~,kjNjuj, where 0 stands for (0 . . . . .  0). 
Thus, by (2.1) 

P ( E ( k , i ) )  = P { E((),i)) = ~-(JV; i) (2.19) 

The  following lemma describes a crucial relation between W, the occupied 
cluster of w 0 on ~, and certain clusters on E. ~ = (el . . . . .  ra) is defined by 

vjNj < )tj(Wo) < (vj + 1)Nj (2.20) 

and/~ is defined in (1.14). 

L e m m a  2. Assume W contains a vertex v with 

kjNj < Xj.(v) < (kj + 1)Nj, 1 < j < d (2.21) 

and 

k m< v m - 2  or k m> v m + 2  for s o m e m  (2.22) 

Then  there exists a self-avoiding path/70 . . . . .  /7 r of white points on E such 
that /70 is adjacent_ to /7= (k I . . . . .  ke) and k, is adjacent  to ~ on e. 
Fur thermore,  if W(l) is the white cluster on e containing i, then 

( :0-,)/(,_._'-,) max # 1~( i )  /> 7 - ' a  # W - / ~ 4 a  /~ (2.23) 
i adjacent 1 1 

to 

Proof. Assume v E W satisfies (2.21). Then  there exists a path v 0 = 
v,v 1 . . . . .  v, = w o on ~, with all vj occupied. If also (2.22) holds, then 
v~ = w 0 does not  belong to the set 

{ v E ~  : ( k j - 1 ) N j < ) t j ( v ) < ( k j + 2 ) N j ,  1 <<. j<a)  (2.24) 

Since v 0 does belong to this set by (2.21), there is a smallest index b for 
which % is outside the set (2.24). For  the sake of argument  let 

)ti(%) >> (k, + 2)S,  

Since Xi(v0) = Xi(v ) <<. (k i + 1)N i, b > 0 and there is a last index a < b with 

~ki(Va) < ( k  i -~- 1 ) N  s 
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Moreover, for t < b, v belongs to (2.24), whence 

(kj - 1)Nj < 2tj(vt) < (kj  + 2)Nj, a < t < b, 1 < j < d 

Thus the path v a . . . . .  v 6 is an/-crossing of 

d 

T( IV; i )+  ~ kojNj.Uj with 
j - -  1 (2.25) 

k o j =  k j -  1, j v  a i, ko i=  k i +  1 

We take/~0 = (kin . . . . .  koa ). Note that 

[ k j -  koj ] <<. 1, 1 < j <~ d (2.26) 

and, by construction,/~0 is white and adjacent to/~. We now try to repeat 
the above process with v replaced by v~. Since N//> A, and vl is adjacent to 
e, we have 

ljNj < )t j(v,)  < (/j + 1)Nj, 1 < j < d 

for some l = (l, . . . .  , la) with Ikj - / j ]  < 1. If (2.22) holds with k m replaced 
by l m, then the above construction yields a white point kl  ~ ( k l i ,  �9 . . ,  k i d )  

with Iktj - 61 < 1. By virtue of (2.26) ]k u - koj[ < 3 so that k~ is adjacent to 
/~0 on ~. Also, part of v z . . . . .  v s will be an m crossing of T(BT;m)+ 
~ , k l j N j U  J for some m. If possible we now replace v by v 2 etc. The process 
can be continued until we arrive at a white point /7 r and a crossing of 
T(~g;m) + ~.krjNjUj,  corresponding to the point v r of the original path, 
while for some l 

/jNj < ~j.(t?r_l_ l) <( / j  + 1)Nj, 1 ~ j ~. d 

and 

Ilm - kr~ ] ~< 2 as well as [ lm-  Vm] < 1 for all 1 < m < d (2.27) 

(2.27) implies that/~r is adjacent to ~. Note that there must be such a vr+~, 
so that the process will stop, by virtue of (2.20). The constructed sequence 
/~0 . . . . .  /~r consists of white points on ~ with successive points adjacent to 
each other and k o (k~) adjacent to k (respectively, ~). However, it may fail 
to be self-avoiding. In that case it can be made self-avoiding by removal of 
loops, so that the first part of the lemma is proved. 

The second part now follows easily. Each point v of W with [~ti(v ) - 
Xi(w0) ] ~> 2 N  i for some i satisfies (2.21) and (2.22) for some/~. For fixed/~, 
there are at most ~ N l . . . N  a vertices v which satisfy (2.21). Thus, if 
# W = M, then there are at least 

M -  ~t 4 ( t~N, . . . Na } - '  

distinct values of //" for which there exists a v + W such that (2.21) and 
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(2.22) are satisfied. For each such/7: we can find a white path/~0, - - �9 on 
starting at a neighbor/~o of/T and ending at a neighbor of ~. Since each 

point of ~ has fewer than 7 d neighbors, a given value of/~0 can be used for 
at most 7 a distinct values of/~. Also/T r can have at most 7 d values. Thus, 
there are at least 

7 -2d M - / ~ I - I ( 4 N j )  { b t N , . . - N  a ) - I  
1 

distinct white points E 0 connected by white paths on ~ to some white 
neighbor ] of ~. This proves (2.23). �9 

Lemma 3. (25) implies (2.6) with 

A = 7-2a(/~N,. �9 �9 N d ) - I  (2.28) 

_ 1 3 - a  Cl=e-172d{~i "r(N;i)) 

_ ~ 13-~]  - 1  7 2 d (  13 " 
• [ 1 -  e7d{ ~/ 'r(N, i)) ] < , ~/'r(:V; i ) } -  (2.29) 

_ _  ~ A 1 3  - a  e-C:=(e7d)A{~i ~'(N;i)) < 2  -A (2.30) 

Put 

Proof. By Lemma 2 

P{#W>~n} <<. ~ P(#ITV(])>~An-I 
] adjacent 

to 

(2.31) 

5(m) = number of connected sets on ~ of m vertices 
and containing 

and let ~ stand for a generic connected set on E. Then the right-hand side 
of (2.31) is bounded by 

7 a ~ 5(m) max P {all points of Care white} (2.32) 
m ~ A n - I  # C = m  

Here we used the fact that ~ has fewer than 7 d neighbors ] on s and that 
the number of connected sets of size m and containing a given ] is the same 
for each [ [i.e., = 6(m)]. To estimate the probability in (2.32) we observe 
that strictly speaking we are not dealing with a percolation problem on 
because the colors of different vertices are not independent. Nevertheless, 
the color of the vertex/7: = (kl, . . . ,  kd) depends only on the occupancy of 
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the vertices v with 

( k j -  1)Uj <~ k j N j -  A <~tj(v) <<(kj + 3)Nj + A 

< + 4)uj for all 1 .< j < d 

Thus, if/71 . . . . .  /~, are vertices of s such that for each r =~ s there exists an 
i with [kri - k,i I /> 6, then the colors of E l . . . . .  /~t depend on disjoint sets 
of vertices of 9, and hence are independent. Now, if C is a given connected 
set of vertices of s with # C = m, then we can choose/~1 . . . . .  k, in C with 
the above property for some t/> 13-%.  With /T1, . . . , / ~ ,  chosen in this 
way we have, by virtue of (2.19), 

P {all points of ~ are white} < P (/~i . . . . .  /~, are white} < 2 r(IV; i) 
ki=l 

Substituting this estimate with t = 13-am into (2.32) we obtain 

d } 13-am 
<<" 7d m>~An--12 ~(m)[( i=1~-]~ I-(N; i) (2.33) P { # W > ~ n }  

Finally, (2.12) applied to ~ with 7 d for z shows 

cT(m) < 72d(7ae) m 

This together with (2.33) yields (2.6) with the values (2.29), (2.30) of Ci. [] 

l.emma 4. (2.7) implies (2.8). 

Proof.  When d = 2 this is easy and is proved for instance in Ref. 5 
(cf. proof of Theorem 3.1). It also follows from Proposition 1 of Ref. 20. 
Most of the proof of this proposition actually works for any d. We indicate 
here the necessary modifications to make the proof go through for d > 2. 
Lemma 1 of Ref. 20 needs to be replaced by the following argument. For 
v, w E ~ and n, N any positive integers make the following definitions: 

A ( v , n )  = {3 an occupied path Vo,V 1 . . . . .  v r with v o 
adjacent to v and 7tl(Vr) ) n} 

So=So(v,N)={w@~ :[X~(w)-Xi(v)l<.N,l <i<d} (2.34) 

S I = S  o U o S  o=  { w ~  : w E S  O or w adjacent to a point of So} 

g(v, w, N) = P {3 selfavoiding occupied path Vo, v I . . . . .  v r 
which passes through w, has v o adjacent to v, 
and v r r So} 

Here, and below, we say that the path v o . . . . .  v r passes through w, if w is 
one of the vj. 
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We claim that  if Xl(v ) < n - N, then 

P ( A ( v , n ) }  < 2 g ( v , w , N ) P  { A ( w , n ) }  (2.35) 
wESI(v,N) 

and that  there exists an N O such that  

g ( v , w , n )  < 3 ,  v ~ 9, N >1 N O (2.36) 
wESI(v,N) 

Once (2.35) and  (2.36) have  been proved  it is easy to show [e.g., by 
specializing the proof  of Proposi t ion 1 of Ref. 20 with (2.35) replacing 
L e m m a  1 and  (2.36) replacing (2.8) of Ref. 20] that  P (A (v ,n ) )  decreases 
exponent ial ly  in n, uni formly  in X](v) < 0. Since for ~ = (n, n . . . . .  n) 

= max  P { A ( v , n ) } ]  (2.37) ~(~; 1) O[l'ld-lXl(V)<<O 

this will prove  (2.8) for i -- 1, and  the proof  for i = 2 . . . . .  d is the same. 
We  turn to the proof  of (2.35). Assume Xl(v ) < n -  N and A (v ,n)  

occurs. Then  there exists an occupied pa th  v 0 . . . . .  v r with v 0 adjacent  to v 
and  Xl(vr)/> n > )tl(v ) + N, and  hence t9 r ~ S 0. Thus, there is a lowest 
index a such that  v a ~ S o. N o w  let 

R = (w ~ S 1 : 3 a pa th  w 0, w I . . . . .  w~ which passes through w, 
such that  w 0 is adjacent  to v, w s ~ So, but  w t E So for t < s)  

In  other words, R is the r a n d o m  set of occupied points  of S t through which 
there exists an occupied pa th  f rom a neighbor  of v to the complemen t  of 
So, which, except  for its endpoint  lies in S 0. By choice of a, v a ~ R. Let  
b ) a be the last index with v b E R and consider the pa th  (vb+ ~ . . . . .  vr). 
This is an occupied pa th  lying entirely outside R, start ing at  the neighbor  
Vb+ 1 of V b and  ending at vr with X](v~) >/ n. Thus,  taking into account  all 
possibilities for %, we have 

P { A ( v , n ) }  <<. ~ P {w E R and 3 an occupied pa th  Wo, W 1 . . . . .  w s 
wESt 

with w 0 adjacent  to w, Xl(w,) > /n  

a n d w  t ~ R f o r 0 <  t < s }  

= 2  
w@S~ C C S  I 

w ~ G  

~ ,  P { R = C and 3 an occupied pa th  

Wo, W l . . . . .  w s with w o adjacent  to w, 

Xl(ws) >/ n a n d w  t ~ C f o r O <  t ~< s)  (2.38) 
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We now fix w ~ S, and a set C c S~, containing w, and estimate the 
probability in the last member of (2.38). We observe that R = C can occur 
only if all vertices of ~ are occupied, and that the indicator function of 
{R = g} is decreasing in all the X(u), u fk C. This is so because R = C 
occurs if there exist suitable occupied paths in G through every point of C, 
and in addition any path u 0 . . . .  , us, which starts at a neighbor u 0 of v and 
ends at u s outside S o and has u, E S o for t < s and has some point u, 
outside ~, is not entirely occupied. Therefore 

I [  R = E] = I[  g is occupied ] J  

for some decreasing function J of the {X(u) : u ~ g}. It now follows from 
the independence of the vertices in and outside g and the F K G  inequality 
(see Ref. 5, Section 2.2) that the probability in the right-hand side of (2.38) 
is at most 

P { e is occupied } E { J } P { 3 an occupied path w0, w i, . . . ,  w~ 
with w 0 adjacent to w, ~l(ws) > n and w t ~ C for 0 < t < s} 
< P{R = ~)P{A(w,n)} (2.39) 

Substitution of (2.39) into (2.38) yields 

P{A(v,n)} < ~ ~ P{R=E}P{A(w,n)} 
w ~ S i  ~ $ I  

w ~  

= Z P{wER)P(A(w,n)}  
w ~ S l  

< ~, g(v,w,N)P{A(w,n)} 
w E S i  

This proves (2.35). (2.36) is easy because any path from a neighbor u of v to 
the complement of So(v, N) contains at least N/A points. Thus 

g(v,w,X) < P (w E W~ and ~ W~ > N/A 

for some neighbor u of v } (2.40) 

and 

~, g(v,w,N)<~ ~ E{#Wu;#Wu> N/A } (2.41) 
w ~ S I ( v , N )  u adjacent  

to v 

For each u E 9, by virtue of the F K G  inequality, 

P { # W > n } > P { w o is connected to u by an occupied 

path and r162 W, > n } 

> P { w 0 is connected to u by an occupied path } 

P { # Wu > n } (2.42) 
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so that (2.7) implies for each u 

Ee(#W  n) 
n = l  n = l  

= E { # W , }  < oe (2.43) 

Both series in (2.43) converge uniformly in u, because of the invariance of 
the probability measure P under translation by any U i. Thus (2.36) is 
immediate from (2.41). As pointed out before this implies the lemma. [] 

Theorem 1 is just a combination of Lemmas 3 and 4. Corollary 1 and 2 
of the introduction are almost immediate. Indeed in the special case when 
all vertices have the same probability p of being occupied, then for p < Ps, 
by definition 

max %(n;i,p)= max ~'(~;i)--)0 
l < i < d  l < i ~ d  

so that (2.6) holds for such p. Clearly (2.6) shows that Ep ( #  W} < oe and 
that no percolation takes place. Consequently p < Ps implies p ~< p:r and 
P < PH- Conversely, i fp < Pr, then (2.7) and hence (2.6) holds. In turn (2.6) 
immediately shows that %(n; i, p)-->0 (n-~ m) [compare (2.37) and Ref. 5 
p. 32]. This proves (1.16). The proof of (1.20) is essentially in Remark 4 of 
Ref. 20. For any p with Ep{# W <  m} there exists an n such that 
"r(~;i)='ro(n;i,p) <�89 by Lemma 4. But for fixed n %(n;i,p) is 
continuous in p, hence %(n; i,/7) < g(d) for/7 < p + 6 for some 8 > 0. 
From (2.6) it then follows that also 

E 5 { # W }  <or  for/7< p + 6  (2.44) 

By definition of aPT (2.44) cannot hold for aP = Pr, whence (1.20). 
All other statements in Corollaries 1 and 2 are obvious. 

3. POWER LAW ESTIMATES 

In this section we prove Theorem 3. Again the proof is split into 
several lemmas. The upper bound for 0 is fairly simple (see Lemma 6). All 
the other estimates are based on Lemma 7, which is a sharper form of the 
main argument in Ref. 7. Once Lemma 7 has been proved we quickly 
obtain in Proposition 1 a lower bound for the probability that the origin is 
connected to a square of size N, when p = YH. The bound is of the order 
N -1+~ for some a > 0; the known lower bound of (2N) -I  for this 
probability given for ~l in Ref. 5, p. 61, and Ref. 20, Remark 4 is 
insufficient for our purposes. Proposition 1 also gives an upper bound for 
sponge crossing probabilities for p < PH. Theorem 3 follows fairly easily 
from Proposition 1 and Theorem 1. 
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Before the proofs proper we collect some facts from Refs. 4, 6, and 8. 
Unless otherwise specified ~ in this section is any one of the four graphs 
~0, ~ 1, ~ ,  ~ ~. When necessary we shall indicate the dependence of various 
quantities on ~ in a self-explanatory manner; e.g., pH(~) will be the critical 
probability PH for the graph ~ �9 ~o and ~l where described in the introduc- 
tion. Both have vertex set Z 2 and are invariant under translations by 
multiples of the vectors U 1 = (2, 0) and U 2 = (0, 2). With this choice of U 1, 
U 2 the point (vl,v2) E Z 2 has kl(v) = i l /2,  A2(v) = i2/2. These facts also 
apply to ~0" and ~ ~'. Two points (i 1 , i2) and ( j l ,  J:) of Z 2 are adjacent on ~" 
if 

l i i - j l [  + li2-J21 = 1 or l i l - i l l - - 1 i 2 - J 2 1  = 1 (3.1) 

On ~ '  (il,i2) and ( j l , j2 )  are adjacent if 

]il - j l ]  + ]i2 - j2 ]  = 1 or l i l - J l l  = [ i 2 - j 2 l -  1 

together with i I + i 2 even or i l - i 2 odd (3.2) 

Thus ~* is isomorphic to ~i and ~ is obtained from ~0 by adding as edges 
all diagonals of lattice squares. In all four graphs all points play the same 
role so that we shall henceforth take w o = 0, and W as the occupied 
component of the origin. We shall drop the subscript 0 in (2.34). Thus 

S ( v , N )  = {w ~ ~ : [~t/(w) - )ti(v)[ < N, i = 1,2} (3.3) 

We shall also need the rectangles 

S ( v , N , k )  = {w : I ~ , ( w ) -  Xl(V)l < kN, l~2(w) - ~2(v)t ~ N (3.4) 

and the annuli 

l~(v, k) = S(v ,  3~) /S(v ,  3 ~- 1) (3.5) 

An occupied left-right crossing of S(v,  N, k) is an occupied path %, . . ,  v r 
with 

- k N  = ~kl(I)0) < ~Xl(l)s) < k N  = Xl( / )r)  , 1 < S -<< r - -  1, 

a n d - N < h 2 ( v t )  ~< N, 0-<< t-<< r 

Note that we can take hi(v0)= - k N  and hl(v~)= k N  because for the 
present graphs G a path cannot cross a line x~ = + k N  in ~e without 
passing through a vertex on this line. Up-down  crossings and vacant 
crossings are defined similarly. The crossing probabilities of interest are 

r t (N; k; p ) =  "cl(N,k; ~, p ) =  Pe{3 an occupied left-right crossing of 
S(O,N,k)  on ~) 

(3.6) 
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Since for our graphs ~ a rotation over 90 ~ takes ~ into a graph isomorphic 
to ~ we have also 

.el(N, 1; p) = Pe {3 an occupied up-down crossing of S(v ,N)  on g} (3.7) 

It follows from Refs. 4, 6, and 8 that there exists a h~ > 0 such that 

~-l(N, 1; ~, PH (~)) t> ]tl > 0, N >t 1 (3.8) 

For 6 = ~l or 6~' (3.8) is formula (11) in Ref. 4 since ~1 and 67 are 
isomorphic and pH(~l)=pH(6~')= �89 For 6 = ~0 or ~ (3.8) follows from 
Ref. 8. Indeed, if ~'l(N, 1; ~0, PH(~O)) --->0 along some sequence of N's, then 
along the same sequence l-l(N, 1; ~ ,  1 - p n ( 6 0 ) )  = , l (N,  1; ~ ' ,  pn(6~'))--> 1 
because pH(G~)= 1--pH(~O)) (see Ref. 8) and if there is no occupied 
left-right crossing of S(0 ,N)  on 6o, then there must be a vacant up-down 
crossing of S(O,N) on ~ (compare Ref. 4, Theorem 4.1). But then also 
~'1(N,3; 6~,pH(~))---> 1 (by Lemma 1 of Ref. 8) and we know that this is 
not the case (by Lemma 2 of Ref. 8). Thus (3.8) holds for 60, and the proof 
for 6~' is the same. It follows as in Ref. 4 Lemmas 5.2-5.4, Ref. 6 Lemmas 
3 and 4, and Ref. 8 Lemma 1 that there exist constants Yk > 0 such that 

"rl(N, k; .~, PH (~)) >~ Yk > 0, N >/ 1 (3.9) 

There also exists a 70 > 0 such that 

Pp,(.~) {3 an occupied circuit on ~ surrounding v (3.10) 
inside the annulus R(v,k)) >1 ~'o > 0 

for all v E 6, k/> 1. Here a circuit is a path V o , . . . ,  v r with Vo = Yr. It is 
said to surround v if it is impossible to connect v to oo by a continuous 
path in R 2 without intersecting one of the edges from v i to v i+1, 0 < i < r. 

Last we introduce a notation for the perimeter of a square, and the 
event that 0 is connected to the perimeter of S(0, N): 

2xS(v,N)= (w:  I h i ( w )  - -  hi(V)[ ~'~ N for i = 1,2 with 
equality for at least one i) (3.11) 

B ( N ) =  {3 an occupied path v0= 0, v l , . . . ,  vr in 
S(0, N) starting at the origin and with end- 
point v~ ~ h S ( 0 , N ) )  (3.12) 

L e m m a  5. Set  

1 log (1  - "/0) fl0 = log 3 

There exists a Cll < ~ for which 

Pp. ( B ( N ) }  < CIlN-flo, N >i 1 (3.13) 
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Moreover, for any fl < flo/2 

ep. { } < (3.14) 

Proof. It is used repeatedly in Refs. 4-6  and 8 (see Lemma 5.6 of 
Ref. 4, Theorem 2 of Ref. 6, as well as Corollary 3.7 and Lemma 3.11 of 
Ref. 5) that if there exists a vacant circuit on ~* in R(v,k), then W~ does 
not contain any vertex of ~ outside S(e, 3~). Here (~*)* = ~i. This fact 
implies as in the above references 

Pp,(.~){B(3")} < Pp,(~){there does not exist a vacant circuit 
surrounding the origin in R(0, j )  on 

* for all 1 < j <  k} 

< (1 - v0)  ~ 

Consequently, for k 0 = [log N / l o g  3] 

Ppu(.~{B(N)) <~ Pe,(.~)( B(3k~ < (1 - yo) k~ 

which immediately implies (3.13). 
(3.14) is immediate from (3.13), because if B(3 k) fails, then W C S(0, 

3 k) and hence # W < (2.3 k + 1) e. Thus, for some constant C 

E e { ( # W ) r  } < C ~  32k(2.3k+ 1 ) 2 ' r  1) 2) 
k=0 

_ -  I 
at p = PH, as soon as/3 < Bo/2 [compare proof of Lemma (5.6) in Ref. 4]. 

[] 

We now use a general argument to derive a bound for Pe {B(N)} from 
(3.13) when p > p•. This immediately gives the upper bound in (1.23) on 
O(p). 

Lemma 6. Forp2 />P l  

Pp~ { B( N ) } ) (pI/!p2)(4N+ I)2Pp2( B( N ) } (3.151 

and there exists a 0 < C 4 < oo (independent of p) such that 

O(p) << C4(p-pH) Bo/z, p ) p~ (3.16) 

Proof. B(N) depends only on the occupancy of the (4N + 1) 2 sites in 
S(0, N). Now let pl < P2 and construct Pp, in two stages. In the first stage 
choose the occupancy of all sites according to Pp2, i.e., independent of each 
other and with 

Pp2 { v is occupied } = P2 
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Next, if v came out vacant in this first stage, leave it vacant. If it was 
occupied in the first stage make it occupied (vacant) in the second stage 
with conditional probability P1/P2 (respectively, 1 - P l / P 2 ) ,  and do this 
independently for all sites which are occupied in the first stage. One easily 
sees that at the end of the second stage the occupancy of the sites is 
distributed according to Pp. Now, since S(0, N) contains (4N + 1) a sites 

Pp , (B(N) )  >1 P ( 3  occupied path v0 = 0,vl . . . . .  vr 
in S(O,N) from 0 to ~S(0, N) in the 
first stage and each v i is still occupied 
in the second stage} 

>1 (pl/p2)(aN+I?Pp2{ B ( N )  } (3.17) 

This proves (3.15). We now take Pl = PH, P >1 PH and use the obvious 
inequality O(p) <~ Pe(B(N)}  for any N. Together with (3.13) this yields 

O(p) < Pp (B(N)}  < (p/pH)(4N+I)2CIIN-B~ (3.18) 

This gives (3.16) by taking 

U = [ { 1 o g p / p H } - ' / 2 ] ~ ( p - - p H ) - ' / 2 p ~ / 2  [] 

Remark  (ii O. Instead of (3.15) we can use Lemma 3 of Ref. 8. For 
our situation this lemma gives 

d pp { B (N)  } < number of vertices in S(0, N) = (4N + 1) 2 (3.19) dp 
This together with (3.1 3) shows that for p/> PH 

O(p) ~ Pe {B(N)} ~< Pp, {B(N) )  + (4N + 1)2(p - PH) 

< C,1N -~o + (4N + l)2(p --PH) (3.20) 

If we now choose 

N = [ (p -- pH ) - l /<fl~ + 2) ] 

we obtain (3.16) with flo/2 replaced by flo/(fio + 2). 
We need some preparations for the next lemma, which is quite similar 

to the proof of Proposition 1 of Ref. 7. A minor complication arises 
because ~ is not necessarily planar. The polygonal curves obtained by 
connecting successive points of a path by line segments can intersect at a 
point which is not a vertex of ~. However, such an intersection would have 
to be the center of a lattice square of 77 2, i.e., the intersection of the two 
diagonals of the lattice square. For this reason we shall bring in an 
auxiliary planar graph ~p. ~p is obtained from ~ by adding a site to ~ at 
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the center of each lattice square of 7/2 where two edges of ~ cross. The new 
site at the center of square S will be adjacent on ~p exactly to the four 
corners of S. Thus a single diagonal edge on ~ is divided on ~e into two 
edges. Now let U = (u0 . . . . .  ut) be a path on ~. ~rU is called a polygon 
through U (on ~) if it is a polygonal curve along edges of ~p such that the 
successive sites of ~ through which it passes are exactly the points of U. A 
side of the polygonal curve ~r U is therefore a straight line segment between 
two neighbors on 7? 2, or between a point (i~ i2) ~ 7?2 and (i 1 + ~ i + -~) We 

' - - 2 '  2 - - 2  " 

can make any polygon into a non-self-intersecting polygon by the usual 
procedure of loop removal. If the polygon goes through a point d twice we 
remove the piece between the first and last passage through d. It  is not 
difficult to check that one loop removal will take wU into a polygon ~rU 
through some path U of the form (u 0 . . . . .  ui, uj, . . . ,  ut) c U, but with the 
same end points u 0 and u t. ui+ I . . . . .  uj_ l are the sites of U which lie on 
the removed piece of ~U (including d once if d is one of the u's). By 
repeating this procedure we will end up with a polygon with the same initial 
and end point as ;U ,  but without double points. From now on we therefore 
restrict ourselves to non-self-intersecting polygons. Polygon will mean a 
polygon without double points. 

Now let a and O be vertices of ~p and k, N /> 0 such that 

S (a ,2  k) C S ( O , N )  (3.21) 

Also, let V = (v 0 . . . .  , v~) and W = (w 0 . . . . .  w~) be two paths in S(O, N)  
with end point on AS(6) ,N)  and let ~rV (~rW) be a polygon through V 
(respectively, W) starting at a and ending at G (respectively, w~) and 
contained in S(O, N). Thus we have 

v t ~ S ( |  

G ~ A S ( |  

w t E S ( O , N ) \ A S ( |  

w s E AS(O, N )  

O < t < r  

O < t < s  

(3.22) 

(3.23) 
V c qrV, qrV goes from a to G, ~rV C S ( O , N )  

W C ~rW, ~rW goes from a to w s, ~rW C S ( |  (3.24) 

In addition we assume 
~rV A qrW= {a} 

In this situation 7rV U 7rW is a simple curve 

(3.25) 
which divides the interior of 

S(O, N)  into two components,  each bounded by ~rV t_J ~rW and one of the 
arcs on AS( • , N )  between v~ and w s (the end points of ~rV and ~rW). 
Denote these components (in any order) by S ' ( O ) - S ' ( | 1 6 2  crW) and 
S ' ( |  = S ' ( O ,  TrV,~rW). Let R be some subset of S(O,N) .  We shall say 
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that v t is connected to W in R if there exists an occupied path u 1 . . . . .  u t on 
such that all uj E R, u~ is adjacent on 6 to v~, and u t is adjacent on ~ to 

some wj, 0 < j < s. We include in this the case where v~ is adjacent to some 
wj, in which case no u's are needed. Now set 

f 

= / 1 Y(v,,k, ~rV, ~rW) 
l 0 

Finally 

z(k) = min Ee, ( 
| 

if v t is connected to W in S'((9) A S(a, 2 k) 

otherwise 
(3.26) 

~, Y(vt,k, TrV,~rW)l 
v, E S(a,2 k) 

-1 X(v) = s " ( o )  (3.27) 

The minimum in (3.27) is over all O,N,a,~rV,~W which satisfy (3.21)- 
(3.25) and all choices of c(v) = + 1 or - 1 for e v E S"(O); X(v) is as in the 
introduction. Note that the sum in (3.27) is simply the number of sites of V 
in S(a, 2 k) which are connected to W in S'((9)(~ S(a, 2k). This sum is 
actually independent of all X(v) with v ~ S"(| so that the conditioning 
in (3.27) is superfluous; it is nevertheless useful for the proof of (3.28) and 
(3.29) below to introduce this conditioning. 

We shall also need a z*(k) which is defined analogously to z(k), but 
with the requirement that some paths are on ~* instead of ~. Specifically, 
we take for W a path on ~ * and for ~rW a polygon through W on ~ *, and 
now call v t . -connected to W in R if there exists a path u ~ ' , . . . ,  uF on ~ *, 
such that all uj* ~ R, all u 7 vacant, u~ adjacent On ~ * to v, and ul* adjacent 
on g* to some wj, 0 < j < s. In (3.26) we now replace connected by 
�9 -connected and denote the resulting random variable by Y*(vt,k, TrV, 
~rW). z*(k) is given by (3.27) with Y replaced by Y*. 

Lemma 7. There exist constants 0 < C12, o~12 ~ OO s u c h  that 

z(k) C,22  ,2k, k 0 (3.28) 
and 

z*(k) >1 C,22"'2k, k/> 0 (3.29) 

Proof. We restrict ourselves to (Y28), since the proof of (3.29) is 
practically identical. (3.28) will be proved by showing 

z(k) >1 (1 + flOz(k - 3), k >t 3 (3.30) 

6 For  any set B C R 2, B- denotes its closure. 
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for some constant fl~ > 0. To prove (3.30) fix O,N,a,k,~V, and ~rW such 
that (3.21)-(3.25) hold and consider the square S(a, 2 k-3) C S(a, 2k). Then 
(3.21)-(3.25) certainly hold with S(a ,2  k) replaced by S(a,2k-3),  and trivi- 
ally Y(vt,k, TrV,~rW ) > Y(vt,k - 3,~rV,~rW). Thus 

Ee. { ~] Y(vt,k, qrV,~rW)[X(v)=c(v),v~ S"(~))) 
vt ~ S(a,2 k- 3) 

>~ EpH ( Z Y(vt ,k-3 ,~rV,~rW),X(v)=,(v) ,vE S"(O)1 
ct ~ S(a,2 s'- 3) ) 

z ( : ,  - 3) (3.31)  

Next consider the annulus 

A ~ closure of ( S (a, 2*- '  + 2 ~- 3) \ S (a, 2 ' - '  - 2 k- 3) } 

C S (a ,2  x) C S(| 

Further, let U = (u 1 . . . . .  ut) be a path on ~ such that 

U c S '(O) tq A, u 1 is adjacent on g to some % ~ V 

and u t is adjacent on g to some w o E W (3.32) 

In (3.32) we allow the possibility that U =  0 if v, E V is adjacent to 
wp ~ W. Now let vrU be a polygon through U on ~ such that 

~rU C S'( |  N A except for its end points, ~ and r say, 

which lie on rrV A A respectively, rrW N A (3.33) 

If U = Q we interpret (3.33) as meaning that ~rU is a polygon on g? which 
(with the possible exception of its end points) does not contain any vertex 
of 9, but connects a point ~ T r V A A  to a point r ~ r W N A  while 
r C S'(O) A A. Note that in any case the initial point ~ is either a 
vertex of G on rrV, i.e., one of the v a, or a new vertex of ~p, i.e., a center of a 
lattice square. In the latter case ~ must be between two vertices v, and % + 
on ~rV, i.e., rrV contains the segments [%,~] and [~,v,+l]. Moreover if 
U :/: a ,  then ~rU begins with the segment [~, ul] and u I is adjacent to % and 
v,+~ on ~. In fact, v,, v,+~ and u~ must be three corners of a lattice square 
with ~ at its center. A similar comment applies to r. 

When (3.33) holds, then rrU divides S'(@) into two components which 
we shall call the inner component [denoted by S~(~rU)] and the exterior 
component [denoted by 5~(rrU)]. S~(rrU) is bounded by the piece of rrV 
between a and ~, ~rU, and the piece of 7rW between r and a (see Fig. 1). 
Se(vrU ) is bounded by the piece of ~rV between v r and ~, ~rU and the piece 
of rrW between r and w s and the arc of AS(O,N) between % and Vr which 
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S' 
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A is the annulus between the --- lines. The small squares centered at a and ~ are 
S(a, 2 k-3) and S(~, 2k-3). 

also bounds S'(O) (see Fig. 1). For two polygons ~r' and ~r" of the form ~rU 
discussed above we shall say that ~r' precedes ~r" if SiOr') C SiOr" ). We now 
consider the collection C = C(~V, ~rW) of all polygons ~rU satisfying (3.33) 
through some occupied path U satisfying (3.32). A variation of the proof of 
Lemma 1 in Ref. 7 shows that if there exists any such ~rU, then there exists 
a unique first one, i.e., one with minimal SiOrU ). If U and ~rU satisfy (3.32), 
(3.33), then we denote by F(rcU) the event 

F(~U) = (U is occupied and ~rU is the first polygon 
in the collection C} (3.34) 

The occurrence of F(~U) depends only on (see footnote 6 on p. 738) 

{X(v) : v a vertex of ~ in ~(~rU) A S'(O)} (3.35) 

because F(rcU) occurs if and only if U is occupied, and for a n y  r and 
corresponding ~rU satisfying (3.32), (3.33), and Si(vU) c Si(~cU), ~rU ~ ~rU, 
at least one of the vertices of U must be vacant. But SiOrU) C Si(vU ) 
implies that all points of U are vertices of ~ in ~OrU). They must also lie 
in S', because U is supposed to satisfy (3.32), and therefore appear in 
(3.35). 
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Now assume that F(~rU) occurs for some specific U =  ( u l , . . . ,  ul) 
and ~U with initial point 4 C 9rV and end point r E ~rW. If 4 = %+1 ~ V or 
if 4 lies between v, and v,+ 1 on ~rV, then take 

Vl = (v~+ l . . . .  , v~) 

and 

~rV~ the piece of ~rV from 4 to v r (3.36) 

W 1 (and ~rW1) will be made up of U and a piece of W (respectively, ~rU and 
a piece of ~-W). Let r the end point of ~rU on ~rW, be equal to wp+ t 'c  W 
or lie between wp and wp+l on ~rW. Then take 

W j  = ( u l  . . . .  , ut ,  w , , + l  . . . . .  w , )  

~rW l = rrU followed by the piece of ~rW from �9 to w, (3.37) 

V~, ~rV~ and W l, ~rW l satisfy (3.22)-(3.25) with a subscript 1 added, and the 
point a replaced by 4. ~rVl O ~rW~ again divides the interior of S(O, N)  into 
two components, S'(O, ~rV1, ~rW1) and S"(O, ~rV I , rrW1). One of these com- 
ponents is bounded by crV 10  ~rW I and the arc of AS(O,H)  between w, 
and v r which also bounds S'(O). Since ~rV 1 U ~rW I is equal to 

(the piece of ~rV from vr to 4) tO ~rU t.) (the piece of 7rW from r to Ws) 

this is the same boundary as that of SeOrU). In other words one of 
S'(O, ~rV 1 , ~rW1) or S"( |  ~rV 1 , ~rWl) is precisely Se(rcU). We index them in 
such a way that 

S'(O, ~rV~, ~rW,) = Se(~rU) (3.38) 

We now show how this allows us to choose a square around ~ which 
plays the same role as S(a ,2  k-s) and whose sites which are on V~ will 
contribute the term fllz(k - 3) in (3.30). Specifically we consider S(4, 2k-3). 
By (3.33) 4, the first point of U, is in A so that 

IXj(4) - ~(a) ]  > 2 k-I - 2 k-3 f o r j  = I or 2 

Consequently 

S(4,2 ~-~) n S (a ,2  ~-~) = 0 

Similarly A c S(a, 2 ~- 1 + 2 k- 3) implies 

S(4,2 k-3) C S (a ,2  k) C S(O,N)  (3.39) 

Consequently 

r ( v , , k ,~V ,~W)  >1 ~ + Y~ V(v , ,k ,~V,~W) 
v~S(a,2 k) vieS(a,2 i'-s) vt~S(~,2 k-3) 

(3.40) 
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The expectation of the first sum in the right-hand side of (3.40) was already 
estimated in (3.31). For the second sum we make two observations. First set 

[10 i fv t i sc~176 
17(vt, k - -  3,~gl , rrWl)  = S'(~),qiVl,ggWl) N S(~,2 k-3) 

otherwise 

17 is the analog of Y, when S'(O, rrV, rrW) is replaced by S'(O,~rV~,rrWl) 
and a by 4- 17(vt,k - 3,~rVl,rrW1)= 1 means that there exists an occupied 
path Q = (ql . . . . .  qm) on ~ with 

qj ~ S'(O, rrVl,~rW1) N S(~,2k-3), 1 < j ~< m, ql 
adjacent to vt, and qm adjacent to some point of 
W~ 

W 1 consist of U plus the points wp+j . . . . .  w, of W. If qm is adjacent to one 
of these wj with j >/0 + 1, then Q actually connects v t to W in 

S'(6),~rV,,~rW~) N S(~,2 k-3) C S'(0, grV, rrW) C) S(a,2 k) (3.41) 

[by (3.38) and (3.39)]. Thus in this case 

Y(v,, k, 7rV, ~rW) = 1 (3.42) 

If qm is not adjacent to a point of W, then it must be adjacent to uj, for 
some 1 ~< j ~< l. In this case the path Ql = (ql . . . . .  qm,uj, uj+~ . . . .  , ul) 
ends in a point adjacent to wp+ l, and by (3.41), (3.32) and the inclusion 
A C S(a,2k), Q1 is still contained in 

n s(a,2 

Thus (3.42) holds again, and for any v t E S(~, 2 k-3) 

Y(v,,k, TrV, qrW) >t 17(v,,k - 3, TrV,,~rW1) 

The second observation is that 

S"((~,qgV, qim) ~_J ~(.7/'O) = S"(O,,BVI,vgW1) 

which is equivalent to (3.38), since 

S'(O,~V,~W)\~U = S,(~U) U Se(~U) 

These observations, together with the fact that F(vrU) is determined by 
the sites of ~ in ~(rrU) A S'(| rrW), which is disjoint from S"(| 
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~rW) [see (3.35)], show that 

Ep. ( Z Y(v,,k, TrV,~W)[X(v)=e(v),v~ S"((O,~V,~W)) 
v~ ~ S(~,2 k -  3) 

= 2e . 

X Ep. ( E V(v,, k, 7rV, ~rW)lX(v ) 
v~ E S(~,2 k -  3) 

= ~(v),v ~ ~"(e,~v,~W),F(~U)} 

> Z e p .  {F(~rU))minEp. ( Z Y(vt ,k -3 , rcVl , rcW,) lX(v)  
E v, e S ( ~ , 2 ' -  3) 

= *l(v),v ~ S " ( e ,  TrVI,~W,) / J 

>1 z(k - 3) ~_~Pp. ( F(rrU) } (3.43) 
C 

In (3.43) ~ e  denotes the sum over all ~rU in ~(~rV, 7rW); the min over ~ is 
over ~/(v)-  + 1 or - 1 .  The last inequality in (3.43) is direct from the 
definition, since ,f;,~V1,~W 1 is a permissable choice for a,~zV,~zW in the 
min in (3.27). 

This practically completes the proof of (3.30). Indeed (3.40), (3.31), 
and (3.43) prove 

and it therefore suffices to prove that 

Pp. { F(rrU) } (3.44) 
c 

is bounded away from zero. But (3.44) is precisely the probability that some 
~U is the first one with an occupied U among all the ones which satisfy 
(3.32) and (3.33). This is simply the probability that C(~rV,~W) is not 
empty. However, just as in Lemma 3 of Ref. 7 we can see that (~(rrV, ~rW) 
v a O as soon as there exists a circuit q0 . . . . .  q,~ on ~ surrounding a inside 
A, and such that all qi which lie in S'(O) are occupied. As in step (ii) of 
Proposition 1 in Ref. 7 it follows that (3.44) is bounded below by 

Pp. (3 an occupied circuit on ff surrounding a inside A } (3.45) 
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Finally, A is built up of four rectangles isomorphic to 

S(0,2k-3,5) ----- {w:  ])tl(W)] ~< 2 k-I + 2 k-3 = 5.2 k-3, lX2(w)l < 2 k-3 } 

and by (3.9), the probability of an occupied left-right crossing of this 
rectangle is at least "/5. As in Lemma 5.4 of Ref. 4, Lemma 3.5 of Ref. 5, or 
Theorem 2 of Ref. 6 it follows from the F K G  inequalities that (3.45), and 
hence (3.44), is bounded below by fl] = ('/5) 4. This proves (3.30). (3.28) 
immediately follows from (3.30) with 

log(l + 131) and C12 = 2-3~t2Z(0) > 0 �9 
%2 = 31og2 

We remind the reader that B(N)  was defined in (3.12), r o in (1.12), 
and r 1 in (3.6). 

Proposition 1. There exist constants 0 < C13 , C14 < ~ such that on 
= g0 ,~] ,~ '  or ~? 

Pp, (B(N)}  > C,3 N~'2-1 (3.46) 

and forp~< PH, i =  1,2, 

%(2k- l , l , p )  4 ro(2k, i ;p)  < e x p -  {C14e~'2k(p14 - p ) )  (3.47) 

Proof. Fix N and take 2 k+l < N < 2  k+2, and O = t h e  origin. Now 
consider the collection of occupied up-down crossings on g of the rectan- 
gle [--2k,2k]• N], i.e., the collection of all occupied paths W =  
( w 0 , . . . ,  %) which satisfy 

IX (w,)l -< 2 0 .< t .< 

and 

X2(w0) = 0 < X2(w,) < N = X2(w,), 1 ~< t 4 s - 1 (3.48) 

For each W satisfying (3.48) consider all polygons rrW through W on 
which start at w 0 and end at %. As in Lemma 1 of Ref. 7, if there is any 
occupied path satisfying (3.48) there is among all polygons through all these 
paths a unique one that is "furthest to the left." Denote by G(rrW) the 
event 

G(rrW) = {rrW is the left-most polygon through any 
occupied path satisfying (3.48)} 

Note that all permissible vrW are contained in S(O,N). Now, to apply 
Lemma 7 take a = w 0, V = (Vo, V 1 . . . .  , v,) the path given by Xz(vi) = 0, 
XI(vi) = Xl(w0) + i /2, until hi(v,) = N. Thus, V consists of the sites of ~ in 
S(0, N) on the first coordinate axis to the right of w o (including wo). For rrV 
we take the straight line segment [hi(w0), N] x {0} through these points. 
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For S '  = S'(O, 7rV, ~rW) we take the "upper right-hand corner" of S(0, N ) \  
7rV U ~rW, i.e., the component bounded by 7rV, {N} • [0, N] -- upper half 
of the right edge of S(O,N), [Xl(W,),N] • {N} -- part of the upper edge of 
S(0, N), and finally ~rW. Now notice that any v t which is connected to W in 
S' n S(a, 2 k) [in the sense used in (3.26)] is also connected by an occupied 
path in S(0, N)  to the upper edge of S(O,N). Indeed, we can connect v t to 
this upper edge by first following its connecting path to W and then 
continuing along W to the upper edge of S(0, N). Consequently 

Ep. { ~ { k E [ - N, + N ] : (k, 0) is connected by 

an occupied path to the line {w : ?~e(W) = N } } } 

Pp. ( G(~rW)} Ep. {number of v t in S(w o, 2 k) connected 
~rW 

to W in S' A S(wo, 2k) l G(~rW)} (3.49) 

As in Ref. 7, or in (3.35) above, the occurrence of G(EW) depends only on 

[in fact only on the X(v) with v on or "to the left" of ~rW]. Consequently, 
the last conditional expectation in (3.49) is by virtue of (3.26)-(3.28) at least 

minEp,, { ~.~ Y(vl, k, rcV,~rW)lX(v)=e(v) ,vES"(O,  rrV,~rW)} 
vt ~ S(w0,2 k) 

>>- z(k) >1 C122"'2k >/ C122-2'~2N '~'2 

It follows that the left-hand side of (3.49) is at least 

C122-2'~'2N'~'2Pp,, {3 occupied path W satisfying (3.48)) 

>/ C,22-2~,2N~,2rl(2k,2; ~, pH(~)) 

/> C122-2~'~72 N~'~ (3.50) 

[see (3.9) and use the symmetry between the horizontal and vertical 
direction]. On the other hand, it is immediate from the definition (3.12) that 
the left-hand side of (3.49) is at most 

(4N + 1)Pp, { B ( N ) }  

This, together with (3.50) yields (3.46). 
To prove (3.47) fix k and p << PH" Consider all occupied left-right 

crossings of T = [0, 2 K] • [ -  1,2 k+2] which lie in the "lower three quarters" 
of this rectangle, and above the line (w:X2(w) = 0}, i.e., occupied paths 
U = (u 0, u I . . . . .  ut) which satisfy 

0 = }kl(U0) (~k](Ul) ( 2 k = ~l(Ut), 1 < l < t, and 
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0 < ~k2(U/) ~ 3.2 k, 0 ~< 1 ~< t (3.51) 

Again for each such path U consider all polygons rrU through U from u 0 to 
u t. As in Lemma 1 of Ref. 7, if there are any occupied paths satisfying 
(3.51), then among all polygons so obtained, there is a unique "lowest" one. 
We denote by H(rrU) the event 

H(vrU) = (~rU is the lowest, polygon through any 
occupied path satisfying (3.51)} 

Given rrU we denote by T + (~rU) and T -  (rrU) the components above and 
below ~rU of T\rrU (compare Ref. 7, Lemma 1). 

Now assume that H(~rU) occurs and consider weak cut sets (in the 
terminology of Ref. 7) in the strip [1, 2 k-l]  • [0, 2k+2], which lies in the left 
half  of T. In the present  nota t ion  these are vacant paths  W =  
(w I . . . . .  Ws) on ~ * such that 

w 1 is adjacent on ~ * to some uj E U, 

wl . . . . .  ws_l ~ T+ (rtU) and, 

1 < ~t](wi) ~< 2 k - ' ,  1 < i <~ s, ~2(w2) = 2 k+2 (3.52) 

Again with each such W we associate all polygons 7rW through W, starting 
at a point a on 7rU, ending at w s, and having only the point a in common 
with 7rU. We denote by GOrU,~rW) the event that a given ~rW is the 
left-most ~rW obtainable in this way. If there is any W satisfying (3.52) 
there is indeed a unique left-most polygon of this form, just as in Lemma 2 
of Ref. 7. 

We are again going to apply Lemma 7, but this time we use (3.29). If 
G(~rU, 7rW) occurs, take 

a -- ~rU N ~rW-- initial point of rrW 

~rV = piece of rrU from a to the right edge of T 

If a = u,+ l, or a lies between u~ and u~+ 1, then ~rV is a polygon through 
V = (u,+ l . . . . .  ut). Furthermore, take O to be the point with 

~ , ( O )  = 2 k - 2 k+2,  ~ 2 ( O )  --  0 

and take N = 2 k +2. Then 

S(a,  2 ~-2) C S(O,N) 

since - 1  <h2(a)~< 3.2 k +  1, 0~<hl(a)~< 2 k - l +  1 by (3.51) and (3.52). 
Also (3.22)-(3.25) hold. As in the first part of this lemma we take S ' =  
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S'(| to be the upper right corner of S(O,N). Next we need an 
interpretation of the conclusion (3.29) for the present situation. Assume 
that Y*(u , k  - 2, TrV, TrW) = 1 for some u s ~ S(a, 2k-2), i > v + 1. Then 
there exists a path (ql . . . . .  qm) on 9" with all qs vacant, qs ~ S(a, 2k-2) 71 
S', and ql adjacent on 6 * to ui, qm adjacent on ~* to some wj. Then the 
path (ql . . . . .  qm, Wj, Wj+ 1 . . . . .  Ws) is a vacant path on g *, which is a weak 
cut set (with respect to U) in the terminology of Ref. 7. In the terminology 
of Ref. 8 this implies that u s is a "critical point" for the event 

D = { B occupied left-right crossing of [ 0, 2 k ] x [ 0, 3.2 k ] } 

Indeed, if GOrU,~rW) occurs, then certainly D must occur; but if also 
Y * ( u i , k -  2,TrV, TcW)= 1 and if u s is changed from occupied to vacant, 
then D no longer occurs (compare Ref. 7, formula (2.31); in the terminol- 
ogy of Ref. 7, (us, qt . . . .  , qm, wj, . . . ,  ws) now becomes a strong cut set). 
By Lemma 3 of Ref. 8 

d )-tip Pp { D } > Ep { number of critical points for D } 

By the above, the right-hand side of (3.53) is at least 

Pe { G(~rU, rrW)} E e ( E 
[ 

(3.53) 

Y * ( u . k  - 2, rrV, ~rW) l G(~rU, ~rW) 
u, ~ S ( a , 2  k - 2) 

i > v + l  

(3.54) 
As before the summation here is over all possible ~rU, ~rW for occupied U 
on ~ satisfying (3.51) and vacant W on ~* satisfying (3.52). Also as before, 
or as in Ref. 7, the occurrence of GOrU, ~rW) depends only on 

{X(v): v 

Moreover, the probability of any vertex being vacant decreases as p 
increases. Thus, the conditional expectation in (3.54) is for p < pH(g) at 
least 

s r*(.,,k- r x(v) 
[ ui ~ S( a,2 k -2) 

u,@TrV 

= e 

J 
>>. z * ( k -  2) > C122 ~':(k-2) (3.55) 
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Also, as in step (i) of Proposition 1 in Ref. 7 for fixed ~zU, 

E Pp{a( U, W)IH( U)I 
all permissible 

~rW 

/> Pp,,(~){3 vacant up-down crossing of 
[1, 2 k-l] • [0,2 k+2] on ~*) 

>/ P*~_p,(~) (3 occupied left-right crossing of 
[0,2 k+2] • [1,2 k-l] on ~*} 

~/16 > 0 (3.56) 

Here P~ is the measure which makes each vertex of ~* occupied with 
probability q, independently for all vertices. In (3.56) we also used the 
symmetry between the horizontal and vertical direction, as well as the 
relation 

PH (~) = 1 -- PH (9 *) (3.57) 

which is known for our graphs, (7'8) and (3.9). Combining (3.53)-(3.56) we 
obtain 

d Tpi' ( E 
all permissible 

~zU 

Y16Ci22at2(k-2) = Y16C122c~,2(k-2)p(D ), fl <~ 1014 

Since Pe . (D)  ~< l, integration of this inequality immediately gives 

Pp ( D } < exp - { Y,6C122~'2(k-2)(p n -- 19)}, P < Pn 

Since Pp ( D } is just what we formerly denoted by %(2 k, 1; p), the second 
inequality of (3.47) for i = 1 has been proven. Since the horizontal and 
vertical direction play the same role for ~, we can also take i = 2 in (3.47). 
Finally, the first inequality in (3.47) is immediate from the definitions. �9 

Proo f  o f  T h e o r e m  3. The right-hand inequality in (1.23) is in 
Lemma 6. For the left-hand inequality we combine Theorem 1 and Proposi- 
tion 1. First we observe that if the origin is connected on ~ to some vertex 
v E AS(0, M) [in the notation of (3.11)] and if there is no vacant circuit on 

* surrounding both the origin and some site on AS(0, M), then 0 is not cut 
off from m, and # W = oo (compare Theorem 2.1 of Ref. 5). Thus, for any 
M 

O(p) >/ Pp (0 is connected by an occupied path on ~ to 
AS(0, M) and there does not exist a vacant 
circuit on ~ * surrounding 0 and some site on 
AS(0, M))  (3.58) 
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Next, by (3.46), for any p >/PH 

Pp (0 is connected by an occupied path on ~ to AS(0,M)} 

= Pp {B(M)}  /> Pp. {B(M)}  /> C13M ~'2-1 (3.59) 

Also, any vacant circuit on ~ * surrounding 0 and a site on AS(0, M)  must 
contain at least 4M vertices. Moreover, any such circuit containing l 
vertices must contain one of the points (j, 0), 1 ~< j < l, on the x axis, and if 
this occurs, W~].o ) , the vacant cluster on ~* containing (j, 0) contains at 
least l elements. This yields 

Pp {3 vacant circuit on ~ * surrounding 0 and a vertex of A S(0, M ) )  

l 

I = 4 M  j ~  I 

= ~ IP~{#W*>I)  (3.60) 
I = 4 M  

where Pff is as in (3.56), and W* is the occupied cluster of 0 on ~ *. Finally, 
by the FKG inequality (Ref. 5, Section 2.2) the right-hand side of (3.58) is 
at least equal to the product of the left-hand side of (3.59) and ( 1 minus the 
left-hand side of (3.60)}. Hence, for any M 

O(p) >~ C'3M~'=-I{ 1 -  l = 4 M  ~ IP~ {# W* >> I}) (3.61) 

It remains to choose M and to use (2.6) to estimate the series in (3.61). 
We now take p > PH and 

k =  C15 log ~v _ p/t 

where Cls, C16 are large enough so that [cf. (2.4)] 

exp  - { C142~'2k(p -- _PH) } ~< x(2) 

and 2 k ) A. For example, we can take 

C15 = (a121og2)-I 

C16 = 2 + [(a121og2)- l log l~ x--------~ 
[ CI4 

For this k, by (3.47) applied to ~ *, and (3.57), 

%(2~, i; ~ *, q) < x(2), i =  1,2 

logA J 
+ 1- g2 

(3.62) 

(3.63) 

(3.64) 
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By Lemma 3 we then have 

P~ {4r >>-l) < CI e - c {  

with 

C 1 = 7412K(2)]-t32 and e-C? = ( e .  4912K(2)] 13 2}A 

where 

(3.65) 

A = 7-4/z- 12 2k 

[since (3.64) gives us (2.5) with ~V = (2 ~, 2~)]. Putting these estimates into 
(3.65) produces the inequality 

Pq { # W* >>- I} < Cle -c'72-2~1 

< C1 exp - { Cls(p - PH) c'"I }, P > P ,  (3.66) 

for suitable 0 < C17 - C19 < oc, independent of I and p > PH" Finally we 
note that 

-4 x ) 
l=4M l e x p -  C18(P - PH)c'91 = dx f ~  -~z-x x=c,8(p-p,l ~~9 

<~ C~o(p - eH) -~ ' 9 {  M + (P - P . ) - ~ ' ~  

X exp - ( 4MC,8(p - p.)c,~} 

Thus, there exists a constant C21 such that 

implies 

M > C21(p--pH) -2C'9 

oo 

2 teg{#w* > t} ~�89 
l = 4 M  

(3.67) 

By virtue of (3.61) this proves 

O(p) ~" ~"~,~13,~2~r~'~- ~(p - p N ) - 2 ~ ~  ~)c,~ 

This proves the left-hand inequality in (1.23). Practically the same 
estimates can be used for several of the other inequalities. First, the 
right-hand inequality in (1.25). Since S(0, M) only contains (4M + 1) 2 sites, 

W > (4M + 1) 2 implies W C? AS(0, M) v a t3 and hence the occurrence of 
B(M) .  By the argument leading to (3.58) and (3.60), (3.67) we therefore 
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have for p > PH 

Pp ( (4M + 1) 2 < # W < oc) < Pp (there exists a vacant circuit on 
* surrounding 0 and some site 

on AS(0, M)) 

< Z 
l = 4 M  

< C~C2o(p -pu)-C'9{M + (p -pa)  -c'9} 

• exp - (4MC,8(p --ell) ~'~) (3.68) 

The right-hand inequality in (1.25) is immediate from this. 
(3.68), when combined with (3.13) and (3.15), also gives us (1.26) for 

P > Pn. To see this, recall that # W/> (4M + 1) 2 implies the occurrence of 
B(M). Thus, in addition to (3.68) we have the bound 

Pe{(4M+ 1): < # W <  oc} < Pp(B(M)) 

< P. Pp.(B(M)) [by (3.15)] 

'~ ( 4 M +  1) 2 
<~ P___ ) CtlM-/3o [by (3.13)] 

PH 
(3.69) 

We can use either (3.68) or (3.69) with (4M + 1) 2 ~ N to estimate 

P ? ( N <  # W < ~ )  (3.70) 

We take M 1 = �89 1/2. Then, by (3.68), for (p -P~I) >>" M1-1/(2c'~), (3.70) is 
at most 

3C1C2oM3/2exp- {4C18Mll/2) < C9 N-"o 

for any choice of a 9 > 0, once N is sufficiently large. If, on the other hand, 

0 < p -- _PH < MI-1/(2C'9) = C22N -1/(4C,9) (3.71) 

then we use (3.69) with 

M = M 2 = I Nmin(1 /2 ,1 /8C,9)  

One easily sees that under (3.71) 

( p / p H ) < 4 M 2  + 1) 2 

is bounded, so that (3.69) is at most C23Mf B~ This proves (1.26) forp > pn 
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with a 9 = flomin(1/2, 1/8C19), F o r p  < p .  (1.26) follows from (3.13) and 

Pp{N < ~ W <  oo}=Pp{N < ~ W }  < Pp(B(�89 

-< ep. p - < e .  

(1.27) is immediate from (1.26). 
Now we must prove the right-hand inequality in (1.24). This follows 

from (3.66) with 9 * playing the role of 9, and p and q interchanged. With 
these changes (3.66) becomes 

P p ( # W > - l } < C ,  exp-{C,8(pn-p)C'9l} ,  p<-Kp, 

Finally we must prove the left-hand inequalities in (1.24) and (1.25). 
These follow from the fact that # W/> 3 k on (B(3k)}. Thus for any k [cf. 
(3.5) for notation] 

Ep ( # W} >/ Ep( # W; # W < oo} >1 3kpp(B(3 k) and there exists a 
vacant circuit on ~ * surrounding 0, outside S(0, 3~)} 

>1 3kep(B(3k)} 

• Pp (3 vacant circuit on 9 * surrounding 
0 in g(O,k + 1)) (3.72) 

Now, fo rp  < p . ,  by (3.15) and (3.46) 

pp { B(3k)} /> (p/pH)(4.3k+ l)2C133k(a,2-l) 

Also the last factor in (3.72) equals 1 for p < PH [since there exist infinitely 
many vacant circuits on 9 * when O(p) = 0, cf. Ref. 18]. W h e n p  1> p , ,  then 
by (3.46) 

ep(B(3k)} /> C133k(~,2 -1) 

while the last factor in (3.71) is, by the same argument which led to (3.15), 
at least 

(q/qn)~ n(0,k+ 1)pp. (:::[ vacant circuit on ~* surrounding 
0 in R(0, k + 1)} 

= (1/q,)~e(O'k+l)P;,(.~.){B occupied circuit on 9" surrounding 
0 in R(O,k + 1)} 

----qqH - )(4"3k+ i+ 1)2 
/> Y0( [by (3.10)] 

Here #R(O,k + 1) denotes the number of sites on 9" in R(O,k + 1), which 
is less than ( 4 . 3  k+l + 1) 2 and P~ is as in (3.56). We obtain the left-hand 
inequality of (1.24), respectively (1.25), by taking 32k approximately I P -  
pt/[ -1/2. �9 
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4. S M O O T H N E S S  P R O P E R T I E S  OF ~1 

In this section we prove Theorem 2. We note that the proof of the 
existence of A"(p) at p = PH depends on the hard estimate (1.26) for all p. 
This estimate is, however, quite easy for p < p/~ (see Lemma 5). It is 
therefore easy to use the proof below and Lemma 5 to show that A has two 
continuous left derivatives at p = PH" By using this fact and (1.22) for ~ as 
well as ~*, one obtains also the existence of two right derivatives. For 

= ~1 we can use the fact that ~1 is self matching, i.e., ~ ~' is isomorphic to 
~1 and hence A(p )=  2x*(p), to derive from (1.22) that A" is actually 
continuous at p = p n ( ~ j ) =  �89 Thus Theorem 2 is quite easy for ~ = ~1. 
This simple approach does not seem to work for ~ = ~0, which is not 
self-matching. 

Proof of Theorem 2. First we prove that A(p) is analytic in p for 
P < Pr = Ps for any ~. To see this note first that A(p) is a finite sum of 
series of the following form [notation as in (2.9)]: 

1_ ~a(n , l )pnq,  (4.1) 
n = l  /'/ [ 

Any such series can easily be handled by Corollary 1 and (2.15). Indeed for 
p + 8 < p + 80 < P T  and suitable C i = Ci(p + 8o,~) 

~ a ( n , l ) ( p  + 8)n(1 - p  - 8 ) ' =  ep+~ ( #  W =  n} 
l 

<~ Pe+8o( # W ) n} < Cle -c2~ 

Thus, for any complexfi  with I f i - p l  < 6 < 80 
( l - - p + ' )  n(z-2)+2 

~a(n ' l ) l f i l " l l - f i l /  l - p - 8  ~a(n'l)(p+8)"(1-P-8)zl 

l - p +  
< 1 p - -  

When p < PT we can choose 6 

\ n ( z - - 2 ) + 2  
8 8 ) Cle_C2 . (4.2) 

> 0 such that the last member of (4.2) 
decreases exponentially fast with n. This implies the analyticity of A(p) for 
P < PT, for any 9. If ~ and G* are matching graphs this also shows that 
A * ( 1 - p )  is analytic for 1 - p  <p~-=_pr(~*). By the Sykes and Essam 
relation (1.22) we then see that A(p) is analytic for 1 - - p  < p~ or p > 1 -- 

P~. 
For the remainder of this section we take ~ = ~0 or ~ .  In this 

case(4'7'8) JOT =PH = 1--p~. and hence A is analytic for p V~pH . Grim- 
mett (21) already showed that A has one continuous derivative for all p. 
(This can also be rederived by the method below.) We therefore content 
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ourselves with showing that the series obtained by differentiating (4.1) 
termwise twice converges uniforrrily on [0, 1]. For ~ = ~0 or ~1 all vertices 
play the same role so that (1.21) reduces to 

~ ( p ) = E ~ ( 1 / # W ; ~ W ~  1) 

= ~ ~ la(n,Z)p"q' 
n = l  / 

[a(n, l) is now defined by (2.9) with w 0 = 0]. Thus, we have to verify the 
uniform convergence of. 

( )2a(n,l)pnq ' -  2~ ~ 1 (  ) 1 n l ~ n l ~ n -p - q -~ + a(n,l)p"q' (4.3) 
n = l  l n = l  l q'~ 

The second series in (4.3) was handled by Grimmett in Ref. 21, but its 
uniform convergence is also implied by (1.26). We restrict ourselves to the 
first series. We break the sum over l into two pieces. The first piece is over 
those l with II/q - n/p I < nl/2+~"~ where 

al0 = min(�88188 [a9 as in (1.26)] 

The tail sum for this piece is 

,(n 2 n p a(n'l)p"qZ 
n = M II /q-  n/pt < nl/2+,~Opq 

<. ~ nZ~'~ 
n=M l 

< ~ n�89 # W < ~ } - P e { n + l <  ~ W < ~ } ]  (4.4) 
n=M 

(4.4) tends to zero uniformly in p as M ~  ~ by (1.26). The remaining 
values of l lead to the tail sum 

1 

n=M 

<<. 

< 

n _ l )2a(n,l)p,,qt 
[l /p-n/ql>n' /2  . . . .  pq(  P -q 

p2 + n ~ a(n,l)pnq t 
n=M [l/p-n/ql>nl/2+~'JOpq 

2 ! z ]z '~  n2exp - p2q .2o,o [by (2.15)] 
p2 + -q5 / n=M --~--n 

[by (2.13) with x =  n-l/2+~'~ The last sum tends to zero as M--->m, 
uniformly forp E [c, 1 - E], e > 0 fixed, but arbitrary. Of course we already 
know that A(p) is analytic for p close to 0 or 1, but it is in any case easy to 
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see that  the series 

1 a ( n , l ) p , - Z q / - 2 { n ( n  _ 1 ) q 2 _  2nlpq + l ( l -  1)p 2) E ;  
ob ta ined  by  di f ferent ia t ing  (4. I) twice termwise,  converges  uni formly,  even 
f o r p  close to 0 or  1. F o r p  < (2ez) -1 we ob ta in  this f rom (2.12), whereas  for 
p close to 1 we use (3.67) (see also Ref. 21, The o re m 3.1) 

~ a ( n , l ) p ' q Z <  Pp(n < # W <  oo} 
1 

<- 2 zeg{w*> l) 

<~ ~ l ~ Z a * ( m , k ) q m p  ~ (4.5) 
r~>N/2 m=t k 

where a * ( m , k )  is def ined  by  (2.9), bu t  with ~ rep laced  by  ~*. But then 

(2.15) and  (2.12) app l i ed  to ~* show that  (4.5) is O { n ( q e z * ) N / 2 } ,  uni-  
fo rmly  on q = 1 - p  < (2ez*) - j ,  where  z* is the ma x ima l  coord ina t ion  

n u m b e r  for ~*. �9 
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